翻訳と辞書
Words near each other
・ Kleinwallstadt
・ Kleinwalsertal
・ Kleinwaltersdorfer Bach
・ Kleinwelka
・ Kleinwelsbach
・ Kleinwort
・ Kleinwort baronets
・ Kleinwort Benson
・ Kleinwort Benson Ltd v Birmingham City Council
・ Kleinzee
・ Kleinzee Airport
・ Kleinzeit
・ Kleinzell
・ Kleinzell im Mühlkreis
・ Klein–Goldberger model
Klein–Gordon equation
・ Klein–Nishina formula
・ Kleis Site
・ Kleisli category
・ Kleisma
・ Kleisoreia
・ Kleisoura
・ Kleisoura (Byzantine district)
・ Kleisoura, Kastoria
・ Kleisoura, Larissa
・ Kleist
・ Kleist Museum
・ Kleist Prize
・ Kleist Sykes
・ Kleist Theater


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Klein–Gordon equation : ウィキペディア英語版
Klein–Gordon equation

The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic version of the Schrödinger equation.
Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. It cannot be straightforwardly interpreted as a Schrödinger equation for a quantum state, because it is second order in time and because it does not admit a positive definite conserved probability density. Still, with the appropriate interpretation, it does describe the quantum amplitude for finding a point particle in various places, the relativistic wavefunction, but the particle propagates both forwards and backwards in time. Any solution to the Dirac equation is automatically a solution to the Klein–Gordon equation, but the converse is not true.
==Statement==
The Klein–Gordon equation is
: \frac \frac \psi - \nabla^2 \psi + \frac \psi = 0.
This is often abbreviated as
:(\Box + \mu^2) \psi = 0,
where and is the d'Alembert operator, defined by
: \Box = -\eta^ \partial_\mu \partial_\nu = \frac\frac - \nabla^2.
(We are using the (−, +, +, +) metric signature.)
The Klein-Gordon equation is most often written in natural units:
: - \partial_t^2 \psi + \nabla^2 \psi = m^2 \psi
The form is determined by requiring that plane wave solutions of the equation:
:\psi = e^ = e^
obey the energy momentum relation of special relativity:
: -p_\mu p^\mu = E^2 - P^2 = \omega^2 - k^2 = - k_\mu k^\mu = m^2
Unlike the Schrödinger equation, the Klein–Gordon equation admits two values of for each , one positive and one negative. Only by separating out the positive and negative frequency parts does one obtain an equation describing a relativistic wavefunction. For the time-independent case, the Klein–Gordon equation becomes
:\left(\nabla^2 - \frac \right ) \psi(\mathbf) = 0
which is the homogeneous screened Poisson equation.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Klein–Gordon equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.